skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Taqqu, Murad S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power-law shape function and non-stationary noises with a power-law variance function. In this paper, we study sample path properties of the generalized fractional Brownian motion, including Hölder continuity, path differentiability/non-differentiability, and functional and local law of the iterated logarithms. 
    more » « less
  2. Abstract We study shot noise processes with Poisson arrivals and nonstationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: (a) the conditional variance functions of the noises have a power law and (b) the conditional noise distributions are piecewise. In both cases, the limit processes are self‐similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self‐similar Gaussian processes with nonstationary increments, via the time‐domain integral representation, which are natural generalizations of fractional Brownian motions. 
    more » « less