- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Pang, Guodong (2)
-
Taqqu, Murad S. (2)
-
Ichiba, Tomoyuki (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The generalized fractional Brownian motion is a Gaussian self-similar process whose increments are not necessarily stationary. It appears in applications as the scaling limit of a shot noise process with a power-law shape function and non-stationary noises with a power-law variance function. In this paper, we study sample path properties of the generalized fractional Brownian motion, including Hölder continuity, path differentiability/non-differentiability, and functional and local law of the iterated logarithms.more » « less
-
Pang, Guodong; Taqqu, Murad S. (, High Frequency)Abstract We study shot noise processes with Poisson arrivals and nonstationary noises. The noises are conditionally independent given the arrival times, but the distribution of each noise does depend on its arrival time. We establish scaling limits for such shot noise processes in two situations: (a) the conditional variance functions of the noises have a power law and (b) the conditional noise distributions are piecewise. In both cases, the limit processes are self‐similar Gaussian with nonstationary increments. Motivated by these processes, we introduce new classes of self‐similar Gaussian processes with nonstationary increments, via the time‐domain integral representation, which are natural generalizations of fractional Brownian motions.more » « less
An official website of the United States government
